
COP 4610: Introduction to Operating Systems (Fall 2016)

Chapter 6 
Process Synchronization

Zhi Wang

Florida State University

Content

• Critical section

• Peterson’s solution

• Synchronization hardware

• Semaphores

• Classic synchronization problems

• Monitors

• Synchronization examples

• Atomic transactions

Background

• Concurrent access to shared data may result in data inconsistency

• data consistency requires orderly execution of cooperating processes

• Example:

• consider a solution to the consumer-producer problem that fills all buffers

• use an integer count to keep track of the number of full buffers

• initially, count is set to 0

• incremented by the producer after it produces a new buffer

• decremented by the consumer after it consumes a buffer.

Producer
while (true) {

/*produce an item and put in nextProduced */
while (counter == BUFFER_SIZE); // do nothing
buffer [in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;
counter++;

}

Consumer
while (true) {

while (counter == 0); // do nothing
nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;
counter--;
/*consume the item in nextConsumed*/

}

Race Condition
• counter++/-- could be implemented as

• register1 = counter

• register1 = register1 +/- 1

• counter = register1

• Consider this execution interleaving with “count = 5” initially:

• S0: producer: register1 = counter {register1 = 5}

• S1: producer: register1 = register1+1 {register1 = 6}

• S2: consumer: register2 = counter {register2 = 5}

• S3: consumer: register2 = register2-1 {register2 = 4}

• S4: producer: counter = register1 {count = 6 }

• S5: consumer: counter = register2 {count = 4}

Critical Section

• Consider system of n processes {p0, p1, … pn-1}

• Each process has a critical section segment of code

• e.g., to change common variables, update table, write file, etc.

• Only one process can be in the critical section

• when one process in critical section, no other may be in its critical section

• each process must ask permission to enter critical section in entry section

• the permission should be released in exit section

Critical Section

• General structure of process pi is

do {
entry section

critical section
exit section

remainder section
} while (true)

Solution to Critical-Section
• Mutual Exclusion

• only one process can execute in the critical section
• Progress

• if no process is executing in its critical section
• there exist some processes that wish to enter their critical section
• these processes cannot be postponed indefinitely
• only these processes participate in the decision of who to enter CS

• Bounded waiting
• a process should not be able to keep entering its critical section if there are other

processes waiting to enter the critical section
• it prevents starvation
• no assumption concerning relative speed of the n processes

Peterson’s Solution

• Peterson’s solution solves two-processes synchronization

• It assumes that LOAD and STORE are atomic

• atomic: execution cannot be interrupted

• The two processes share two variables

• int turn: whose turn it is to enter the critical section

• Boolean flag[2]: whether a process is ready to enter the critical section

Peterson’s Solution
• P0:

do {
flag[0] = TRUE;
turn = 1;
while (flag[1] && turn == 1);
critical section
flag[0] = FALSE;
remainder section

} while (TRUE);

• P1:

do {
flag[1] = TRUE;
turn = 0;
while (flag[0] && (turn == 0));
critical section
flag[1] = FALSE;
remainder section

} while (TRUE);

• mutual exclusion?

• progress?

• bounded-waiting?

Synchronization Hardware

• Many systems provide hardware support for critical section code
• Uniprocessors: disable interrupts

• currently running code would execute without preemption
• generally too inefficient on multiprocessor systems

• need to disable all the interrupts
• operating systems using this not scalable

• Modern machines provide special atomic hardware instructions
• test-and-set: either test memory word and set value
• swap: swap contents of two memory words
• these instructions can be used to implement locks

• usually called spin lock
• ok for very short critical sections

Critical-section Using Locks
do {

 acquire lock

 critical section

 release lock

 remainder section

} while (TRUE);

Test-and-Set Instruction
• Defined as below, but atomically

bool test_set (bool *target)
{

bool rv = *target;
*target = TRUE;
return rv:

}

Lock with Test-and-Set

• shared variable: bool lock = FALSE

do {
 while (test_set(&lock)); // busy wait
 critical section
 lock = FALSE;
 remainder section
} while (TRUE);

• Mutual exclusion?

• progress?

• bounded-waiting?

Swap Instruction
• Defined as below, but atomically

void swap (bool *a, bool *b)
{

bool temp = *a;
*a = *b;
*b = temp:

}

Lock with Swap

• shared variable: bool lock = FALSE
• each process has a local variable: key

do {
key = TRUE;
while (key == TRUE) swap (&lock, &key);
critical section
lock = FALSE;
remainder section

} while (TRUE);

• Mutual exclusion? Progress? Bounded-waiting?

Bounded Waiting for Test-and-Set Lock
do {

waiting[i] = TRUE;
key = TRUE;
while (waiting[i] && key) key=test_set(&lock);
waiting[i] = FALSE;
critical section
j = (i + 1) % n;
while ((j != i) && !waiting[j]) j = (j + 1) % n;
if (j == i)

lock = FALSE;
else

waiting[j] = FALSE;
…

} while (TRUE);

Semaphore

• Semaphore S is an integer variable

• e.g., to represent how many units of a particular resource is available

• It can only be updated with two atomic operations: wait and signal

• spin lock can be used to guarantee atomicity of wait and signal

• originally called P and V (Dutch)
• a simple implementation with busy wait can be:

wait(s) signal(s)

{ {

 while (s <= 0) ; //busy wait s++;

 s--; }

}

Semaphore

• Counting semaphore: allowing arbitrary resource count
• Binary semaphore: integer value can be only 0 or 1

• also known as mutex lock to provide mutual exclusion

Semaphore mutex; // initialized to 1
do {

wait (mutex);
critical section
signal (mutex);
remainder section

} while (TRUE);

Semaphore w/ Waiting Queue

• Associate a waiting queue with each semaphore

• place the process on the waiting queue if wait cannot return immediately

• wake up a process in the waiting queue in signal

• There is no need to busy wait

• Note: wait and signal must still be atomic

Semaphore w/ Waiting Queue
wait(semaphore *S)
{
 S->value--;

 if (S->value < 0) {
 add this process to S->list;
 block();
 }
}

signal(semaphore *S)
{
 S->value++;
 if (S->value <= 0) {
 remove a process P from S->list;
 wakeup(P);
 }
}

Deadlock and Starvation

• Deadlock: two or more processes are waiting indefinitely for an event that
can be caused by only one of the waiting processes
	 let S and Q be two semaphores initialized to 1

 P0 P1

 wait (S); wait (Q);

 wait (Q); wait (S);

 … …

 signal (S); signal (Q);

 signal (Q); signal (S);

• Starvation: indefinite blocking
• a process may never be removed from the semaphore’s waiting queue
• does starvation indicate deadlock?

Priority Inversion

• Priority Inversion: a higher priority process is indirectly preempted by a
lower priority task

• e.g., three processes, PL, PM, and PH with priority PL < PM < PH

• PL holds a lock that was requested by PH ➱ PH is blocked

• PM becomes ready and preempted the PL

• It effectively "inverts" the relative priorities of PM and PH

• Solution: priority inheritance

• temporary assign the highest priority of waiting process (PH) to the process
holding the lock (PL)

Classical Synchronization Problems

• Bounded-buffer problem

• Readers-writers problem

• Dining-philosophers problem

Bounded-Buffer Problem

• Two processes, the producer and the consumer share n buffers
• the producer generates data, puts it into the buffer
• the consumer consumes data by removing it from the buffer

• The problem is to make sure:

• the producer won’t try to add data into the buffer if its full

• the consumer won’t try to remove data from an empty buffer

• also call producer-consumer problem
• Solution:

• n buffers, each can hold one item
• semaphore mutex initialized to the value 1
• semaphore full initialized to the value 0
• semaphore empty initialized to the value N

Bounded-Buffer Problem

• The producer process:

do { 
 //produce an item

 …

 wait(empty);

 wait(mutex);

 //add the item to the buffer

 …

 signal(mutex);

 signal(full);

} while (TRUE)

Bounded Buffer Problem

• The consumer process:

do {

 wait(full);

 wait(mutex);

 //remove an item from buffer

 …

 signal(mutex);

 signal(empty);

 //consume the item

 …

} while (TRUE);

Readers-Writers Problem

• A data set is shared among a number of concurrent processes

• readers: only read the data set; they do not perform any updates

• writers: can both read and write

• The readers-writers problem:

• allow multiple readers to read at the same time (shared access)

• only one single writer can access the shared data (exclusive access)

• Solution:

• semaphore mutex initialized to 1

• semaphore wrt initialized to 1

• integer read_count initialized to 0

Readers-Writers Problem

• The writer process

do {

 wait(wrt);

 //write the shared data

 …

 signal(wrt);

} while (TRUE);

Readers-Writers Problem
• The structure of a reader process

do {
 wait(mutex);
 readcount++ ;
 if (readcount == 1)
 wait(wrt) ;
 signal(mutex)

 //reading data
 …
 wait(mutex) ;
 readcount--;
 if (readcount == 0)
 signal(wrt) ;
 signal(mutex) ;
} while(TRUE);

Readers-Writers Problem Variations

• Two variations of readers-writers problem (different priority policy)

• no reader kept waiting unless writer is updating data

• once writer is ready, it performs write ASAP

• Which variation is implemented by the previous code example???

• Both variation may have starvation leading to even more variations

• how to prevent starvation

Dining-Philosophers Problem

• Philosophers spend their lives thinking and eating

• they sit in a round table, but don’t interact with each other

• They occasionally try to pick up 2 chopsticks (one at a time) to eat

• one chopstick between each adjacent two philosophers

• need both chopsticks to eat, then release both when done

• Dining-philosopher problem represents multi-resource synchronization

• Solution (assuming 5 philosophers):

• semaphore chopstick[5] initialized to 1

 Dining-Philosophers Problem

• Philosopher i (out of 5):
do {

 wait(chopstick[i]);

 wait(chopStick[(i+1)%5]);

 eat

 signal(chopstick[i]);

 signal(chopstick[(i+1)%5]);

 think

} while (TRUE);

• What is the problem with this algorithm?

• deadlock and starvation

Monitors

• Monitor is a high-level abstraction to provide synchronization
• Monitor is an abstract data type

• similar to classes in object-oriented programming
• internal variables only accessible by code within the procedure

• Only one thread may be active within the monitor at a time!!!

monitor monitor-name

{

 // shared variable declarations

 procedure P1 (…) { …. }

 …

 procedure Pn (…) {……}

 Initialization code (…) { … }

}

Schematic View of a Monitor

Problems with Monitor

• Monitor can provide mutual exclusion

• only one thread (process) can be active within a monitor

• Threads may need to wait until some condition P holds true

• Busy waiting in monitor does not work

• only one thread can be active within a monitor ➱

• if it busy-waits, others cannot enter monitor ➱

• condition P may rely on other thread’s operations

• Solution: condition variable

Condition Variable

• Condition variable is a waiting queue in monitor, on which a thread may
wait for some condition to become true

• each condition variable is associated with an assertion Pc

• thread waiting on a CV is not considered to be occupying the monitor

• other thread may enter monitor and signal CV when Pc becomes valid

• Two operations on a condition variable:

• wait: suspend the calling thread until signal

• signal: resumes one thread (if any) waiting on the CV

• if no thread on the variable, signal has no effect on the variable

 Monitor with Condition Variables

Solution to Dining Philosophers
monitor DiningPhilosophers
{

enum { THINKING; HUNGRY, EATING} state[5] ;
condition self[5];

void pickup (int i) {
state[i]=HUNGRY;
test(i);
if (state[i]!=EATING)
self[i].wait;

}

void putdown (int i) {
state[i] = THINKING;
// test left and right neighbors
test((i + 4) % 5);
test((i + 1) % 5);

}

Solution to Dining Philosophers
void test (int i) {

if ((state[(i+4)%5] != EATING) &&
(state[i] == HUNGRY) &&
(state[(i+1)%5] != EATING)) {

state[i] = EATING ;
self[i].signal() ;

}
}

initialization_code() {
for (int i = 0; i < 5; i++)
state[i] = THINKING;

}
}

Solution to Dining Philosophers

• Each philosopher i invokes the operations in the following sequence:

	 DiningPhilosophers.pickup (i)

 EAT

 DiningPhilosophers.putdown (i);

• Only one philosopher can be active in the monitor

• it will start eating when neither neighbor is eating, otherwise it will wait

• No deadlock, but starvation is possible

Monitor Implementation
• Variables

	 semaphore mutex; // (initially = 1)

 semaphore next; // (initially = 0)

 int next_count = 0; 

• Each procedure F will be replaced by

	 wait(mutex);

 body of F;

 if (next_count > 0)

 signal(next)

 else

 signal(mutex);

• Mutual exclusion within a monitor is ensured

Pthread CV Example
int count = 0;
pthread_mutex_t count_mutex;
pthread_cond_t count_threshold_cv;

void *inc_count(void *t)
{

int i;
long my_id = (long)t;

for (i=0; i < TCOUNT; i++) {
pthread_mutex_lock(&count_mutex);
count++;

/* Check the value of count and signal waiting thread when condition is
reached. Note that this occurs while mutex is locked. */
if (count == COUNT_LIMIT) {

pthread_cond_signal(&count_threshold_cv);
}

pthread_mutex_unlock(&count_mutex);
/* Do some work so threads can alternate on mutex lock */
sleep(1);

}
pthread_exit(NULL);

}

Pthread CV Example
void *watch_count(void *t)
{

long my_id = (long)t;

printf("Starting watch_count(): thread %ld\n", my_id);

/*
Lock mutex and wait for signal. Note that the pthread_cond_wait routine
will automatically and atomically unlock mutex while it waits.
Also, note that if COUNT_LIMIT is reached before this routine is run by
the waiting thread, the loop will be skipped to prevent pthread_cond_wait
from never returning.
*/
pthread_mutex_lock(&count_mutex);
while (count < COUNT_LIMIT) {

pthread_cond_wait(&count_threshold_cv, &count_mutex);
count += 125;

}
pthread_mutex_unlock(&count_mutex);
pthread_exit(NULL);

}

Synchronization Examples

• Windows XP

• Linux

Windows XP Synchronization

• interrupt mask: protect access to global data on uniprocessor systems

• spinlocks on multiprocessor systems

• spinlocking-thread will never be preempted

• dispatcher objects for user-land

• to provide mutex, semaphore, event, and timer

• either in the signaled state (object available) or non-signaled state (will block)

Linux Synchronization

• Linux:

• prior to version 2.6, disables interrupts to implement short critical sections

• version 2.6 and later, fully preemptive

• Linux provides:

• semaphores

• on single-cpu system, spinlocks replaced by enabling/disabling kernel preemption

• spinlocks

• reader-writer locks

End of Chapter 6

