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Background

• Concurrent access to shared data may result in data inconsistency 

• data consistency requires orderly execution of cooperating processes 

• Example:  

• consider a solution to the consumer-producer problem that fills all buffers 

• use an integer count to keep track of the number of full buffers   

• initially, count is set to 0  

• incremented by the producer after it produces a new buffer  

• decremented by the consumer after it consumes a buffer.



Producer
while (true) {

/*produce an item and put in nextProduced  */
while (counter == BUFFER_SIZE); // do nothing
buffer [in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;
counter++;

}   



Consumer
while (true)  {

while (counter == 0); // do nothing
nextConsumed =  buffer[out];
out = (out + 1) % BUFFER_SIZE;
counter--;
/*consume the item in nextConsumed*/

}



Race Condition
• counter++/-- could be implemented as 

• register1 = counter 

• register1 = register1 +/- 1  

• counter = register1 

• Consider this execution interleaving with “count = 5” initially: 

• S0: producer:   register1 = counter            {register1 = 5}  

• S1: producer:   register1 = register1+1      {register1 = 6}  

• S2: consumer:  register2 = counter           {register2 = 5}  

• S3: consumer:  register2 = register2-1      {register2 = 4}  

• S4: producer:   counter = register1            {count = 6 }  

• S5: consumer:  counter = register2            {count = 4}



Critical Section

• Consider system of n processes {p0, p1, … pn-1} 

• Each process has a critical section segment of code 

• e.g., to change common variables, update table, write file, etc. 

• Only one process can be in the critical section 

• when one process in critical section, no other may be in its critical section 

• each process must ask permission to enter critical section in entry section 

• the permission should be released in exit section



Critical Section

• General structure of process pi is 

do {
entry section

critical section
exit section

remainder section
} while (true)



Solution to Critical-Section
• Mutual Exclusion 

• only one process can execute in the critical section 
• Progress  

• if no process is executing in its critical section  
• there exist some processes that wish to enter their critical section  
• these processes cannot be postponed indefinitely 
• only these processes participate in the decision of who to enter CS 

• Bounded waiting  
• a process should not be able to keep entering its critical section if there are other 

processes waiting to enter the critical section 
• it prevents starvation 
• no assumption concerning relative speed of the n processes



Peterson’s Solution

• Peterson’s solution solves two-processes synchronization 

• It assumes that LOAD and STORE are atomic 

• atomic: execution cannot be interrupted 

• The two processes share two variables 

• int turn: whose turn it is to enter the critical section 

• Boolean flag[2]: whether a process is ready to enter the critical section



Peterson’s Solution
• P0: 

do { 
flag[0] = TRUE; 
turn = 1; 
while (flag[1] && turn == 1); 
critical section 
flag[0] = FALSE; 
remainder section 

} while (TRUE); 

• P1: 

do { 
flag[1] = TRUE; 
turn = 0; 
while (flag[0] && (turn == 0)); 
critical section 
flag[1] = FALSE; 
remainder section 

} while (TRUE); 

• mutual exclusion? 

• progress? 

• bounded-waiting?



Synchronization Hardware

• Many systems provide hardware support for critical section code 
• Uniprocessors: disable interrupts 

• currently running code would execute without preemption 
• generally too inefficient on multiprocessor systems 

• need to disable all the interrupts  
• operating systems using this not scalable 

• Modern machines provide special atomic hardware instructions 
• test-and-set: either test memory word and set value 
• swap: swap contents of two memory words 
• these instructions can be used to implement locks 

• usually called spin lock 
• ok for very short critical sections



Critical-section Using Locks
do {  

  acquire lock  

   critical section  

  release lock  

  remainder section  

} while (TRUE); 



Test-and-Set Instruction 
• Defined as below, but atomically  

bool test_set (bool *target)
{

bool rv = *target;
*target = TRUE;
return rv:

}



Lock with Test-and-Set

• shared variable: bool lock = FALSE 

do {
    while (test_set(&lock));   // busy wait
    critical section
    lock = FALSE;
    remainder section 
} while (TRUE);

• Mutual exclusion?  

• progress?  

• bounded-waiting?



Swap Instruction
• Defined as below, but atomically 

void swap (bool *a, bool *b)
{

bool temp = *a;
*a = *b;
*b = temp:

}



Lock with Swap

• shared variable: bool lock = FALSE 
• each process has a local variable: key 

do {
key = TRUE;
while ( key == TRUE) swap (&lock, &key);
critical section
lock = FALSE;
remainder section 

} while (TRUE);

• Mutual exclusion? Progress? Bounded-waiting?



Bounded Waiting for Test-and-Set Lock
do { 

waiting[i] = TRUE; 
key = TRUE; 
while (waiting[i] && key) key=test_set(&lock); 
waiting[i] = FALSE; 
critical section 
j = (i + 1) % n; 
while ((j != i) && !waiting[j]) j = (j + 1) % n; 
if (j == i) 

lock = FALSE; 
else 

waiting[j] = FALSE; 
…

} while (TRUE);



Semaphore

• Semaphore S is an integer variable


• e.g., to represent how many units of a particular resource is available 

• It can only be updated with two atomic operations: wait and signal


• spin lock can be used to guarantee atomicity of wait and signal 

• originally called P and V (Dutch) 
• a simple implementation with busy wait can be:  

wait(s)          signal(s) 

{           { 

  while (s <= 0) ; //busy wait    s++; 

  s--;         } 

} 



Semaphore

• Counting semaphore: allowing arbitrary resource count 
• Binary semaphore: integer value can be only 0 or 1 

• also known as mutex lock to provide mutual exclusion 

Semaphore mutex;    //  initialized to 1
do {

wait (mutex);
critical section
signal (mutex);
remainder section

} while (TRUE);



Semaphore w/ Waiting Queue

• Associate a waiting queue with each semaphore  

• place the process on the waiting queue if wait cannot return immediately 

• wake up a process in the waiting queue in signal 

• There is no need to busy wait 

• Note: wait and signal must still be atomic



Semaphore w/ Waiting Queue
wait(semaphore *S)
{
    S->value--; 

  if (S->value < 0) { 
        add this process to S->list; 
        block(); 
    } 
}

signal(semaphore *S) 
{ 
    S->value++; 
    if (S->value <= 0) { 
        remove a process P from S->list; 
        wakeup(P); 
     }
}



Deadlock and Starvation

• Deadlock: two or more processes are waiting indefinitely for an event that 
can be caused by only one of the waiting processes 
	 let S and Q be two semaphores initialized to 1 

   P0                    P1 

  wait (S);                 wait (Q); 

  wait (Q);                 wait (S); 

  …                … 

  signal (S);                 signal (Q); 

  signal (Q);                 signal (S); 

• Starvation: indefinite blocking   
• a process may never be removed from the semaphore’s waiting queue 
• does starvation indicate deadlock?



Priority Inversion

• Priority Inversion: a higher priority process is indirectly preempted by a 
lower priority task  

• e.g., three processes, PL, PM, and PH with priority PL < PM < PH 

• PL holds a lock that was requested by PH ➱ PH is blocked 

• PM becomes ready and preempted the PL 

• It effectively "inverts" the relative priorities of PM and PH 

• Solution: priority inheritance 

• temporary assign the highest priority of waiting process (PH) to the process 
holding the lock (PL)



Classical Synchronization Problems

• Bounded-buffer problem 

• Readers-writers problem 

• Dining-philosophers problem



Bounded-Buffer Problem

• Two processes, the producer and the consumer share n buffers 
• the producer generates data, puts it into the buffer 
• the consumer consumes data by removing it from the buffer 

• The problem is to make sure: 

• the producer won’t try to add data into the buffer if its full 

• the consumer won’t try to remove data from an empty buffer 

• also call producer-consumer problem 
• Solution: 

• n buffers, each can hold one item 
• semaphore mutex initialized to the value 1 
• semaphore full initialized to the value 0 
• semaphore empty initialized to the value N



Bounded-Buffer Problem

• The producer process: 

do { 
 //produce an item 

 … 

 wait(empty); 

 wait(mutex); 

 //add the item to the  buffer 

 … 

 signal(mutex); 

 signal(full); 

} while (TRUE)



Bounded Buffer Problem

• The consumer process: 

do { 

 wait(full); 

 wait(mutex); 

 //remove an item from  buffer 

 … 

 signal(mutex); 

 signal(empty); 

 //consume the item 

 … 

} while (TRUE);



Readers-Writers Problem

• A data set is shared among a number of concurrent processes 

• readers: only read the data set; they do not perform any updates 

• writers: can both read and write 

• The readers-writers problem: 

• allow multiple readers to read at the same time (shared access) 

• only one single writer can access the shared data (exclusive access) 

• Solution: 

• semaphore mutex initialized to 1 

• semaphore wrt initialized to 1 

• integer read_count initialized to 0



Readers-Writers Problem

• The writer process 

do { 

 wait(wrt); 

 //write the shared data 

 … 

 signal(wrt); 

} while (TRUE);



Readers-Writers Problem
• The structure of a reader process 

do { 
 wait(mutex); 
 readcount++ ; 
 if (readcount == 1)   
  wait(wrt) ; 
 signal(mutex) 
                 
 //reading data 
 … 
 wait(mutex) ; 
 readcount--; 
 if (readcount == 0)   
  signal(wrt) ; 
 signal(mutex) ; 
} while(TRUE);



Readers-Writers Problem Variations

• Two variations of readers-writers problem (different priority policy) 

• no reader kept waiting unless writer is updating data 

• once writer is ready, it performs write ASAP 

• Which variation is implemented by the previous code example??? 

• Both variation may have starvation leading to even more variations 

• how to prevent starvation



Dining-Philosophers Problem

• Philosophers spend their lives thinking and eating 

• they sit in a round table, but don’t interact with each other 

• They occasionally try to pick up 2 chopsticks (one at a time) to eat 

• one chopstick between each adjacent two philosophers 

• need both chopsticks to eat, then release both when done 

• Dining-philosopher problem represents multi-resource synchronization 

• Solution (assuming 5 philosophers): 

• semaphore chopstick[5] initialized to 1



  Dining-Philosophers Problem

• Philosopher i (out of 5): 
do  {  

 wait(chopstick[i]); 

 wait(chopStick[(i+1)%5]); 

 eat 

 signal(chopstick[i]); 

 signal(chopstick[(i+1)%5]); 

 think 

} while (TRUE); 

• What is the problem with this algorithm? 

• deadlock and starvation



Monitors

• Monitor is a high-level abstraction to provide synchronization 
• Monitor is an abstract data type 

• similar to classes in object-oriented programming 
• internal variables only accessible by code within the procedure 

• Only one thread may be active within the monitor at a time!!! 

monitor monitor-name 

{ 

  // shared variable declarations 

  procedure P1 (…) { …. } 

  … 

  procedure Pn (…) {……} 

      Initialization code (…) { … } 

}



Schematic View of a Monitor



Problems with Monitor

• Monitor can provide mutual exclusion 

• only one thread (process) can be active within a monitor 

• Threads may need to wait until some condition P holds true 

• Busy waiting in monitor does not work 

• only one thread can be active within a monitor  ➱ 

• if it busy-waits, others cannot enter monitor  ➱ 

• condition P may rely on other thread’s operations 

• Solution: condition variable



Condition Variable

• Condition variable is a waiting queue in monitor, on which a thread may 
wait for some condition to become true 

• each condition variable is associated with an assertion Pc 

• thread waiting on a CV is not considered to be occupying the monitor 

• other thread may enter monitor and signal CV when Pc becomes valid 

• Two operations on a condition variable: 

• wait: suspend the calling thread until signal  

• signal: resumes one thread (if any) waiting on the CV 

• if no thread on the variable, signal has no effect on the variable



 Monitor with Condition Variables



Solution to Dining Philosophers
monitor DiningPhilosophers
{ 

enum { THINKING; HUNGRY, EATING} state[5] ;
condition self[5];

void pickup (int i) { 
state[i]=HUNGRY;
test(i);
if (state[i]!=EATING) 
self[i].wait;

}

void putdown (int i) { 
state[i] = THINKING;
// test left and right neighbors
test((i + 4) % 5);
test((i + 1) % 5);

}



Solution to Dining Philosophers
void test (int i) { 

if ((state[(i+4)%5] != EATING) &&
(state[i] == HUNGRY) &&
(state[(i+1)%5] != EATING)) { 

state[i] = EATING ;
self[i].signal() ;

}
}

initialization_code() { 
for (int i = 0; i < 5; i++)
state[i] = THINKING;

}
}



Solution to Dining Philosophers

• Each philosopher i invokes the operations in the following sequence: 

	 DiningPhilosophers.pickup (i) 

 EAT 

 DiningPhilosophers.putdown (i); 

• Only one philosopher can be active in the monitor 

• it will start eating when neither neighbor is eating, otherwise it will wait 

• No deadlock, but starvation is possible



Monitor Implementation
• Variables  

	 semaphore mutex;  // (initially  = 1) 

 semaphore next;     // (initially  = 0) 

 int next_count = 0; 

• Each procedure F will be replaced by 

	 wait(mutex); 

 body of F; 

 if (next_count > 0) 

  signal(next) 

 else  

  signal(mutex); 

• Mutual exclusion within a monitor is ensured



Pthread CV Example
int     count = 0;
pthread_mutex_t count_mutex;
pthread_cond_t count_threshold_cv;

void *inc_count(void *t) 
{

int i;
long my_id = (long)t;

for (i=0; i < TCOUNT; i++) {
pthread_mutex_lock(&count_mutex);
count++;

/* Check the value of count and signal waiting thread when condition is
reached.  Note that this occurs while mutex is locked. */
if (count == COUNT_LIMIT) {

pthread_cond_signal(&count_threshold_cv);
}

pthread_mutex_unlock(&count_mutex);
/* Do some work so threads can alternate on mutex lock */
sleep(1);

}
pthread_exit(NULL);

}



Pthread CV Example
void *watch_count(void *t) 
{

long my_id = (long)t;

printf("Starting watch_count(): thread %ld\n", my_id);

/*
Lock mutex and wait for signal.  Note that the pthread_cond_wait routine
will automatically and atomically unlock mutex while it waits. 
Also, note that if COUNT_LIMIT is reached before this routine is run by
the waiting thread, the loop will be skipped to prevent pthread_cond_wait
from never returning.
*/
pthread_mutex_lock(&count_mutex);
while (count < COUNT_LIMIT) {

pthread_cond_wait(&count_threshold_cv, &count_mutex);
count += 125;

}
pthread_mutex_unlock(&count_mutex);
pthread_exit(NULL);

}



Synchronization Examples

• Windows XP 

• Linux



Windows XP Synchronization

• interrupt mask: protect access to global data on uniprocessor systems 

• spinlocks on multiprocessor systems 

• spinlocking-thread will never be preempted 

• dispatcher objects for user-land  

• to provide mutex, semaphore, event, and timer 

• either in the signaled state (object available) or non-signaled state (will block)



Linux Synchronization

• Linux: 

• prior to version 2.6, disables interrupts to implement short critical sections 

• version 2.6 and later, fully preemptive 

• Linux provides: 

• semaphores 

• on single-cpu system, spinlocks replaced by enabling/disabling kernel preemption 

• spinlocks 

• reader-writer locks



End of Chapter 6


